The Ronkin number of an exponential sum

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The unit sum number of discrete modules

In this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $Z_{2}$. We also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.

متن کامل

The unit sum number of Baer rings

In this paper we prove that each element of any regular Baer ring is a sum of two units if no factor ring of R is isomorphic to Z_2 and we characterize regular Baer rings with unit sum numbers $omega$ and $infty$. Then as an application, we discuss the unit sum number of some classes of group rings.

متن کامل

The Lifting of an Exponential Sum to a Cyclic Algebraic Number Field of a Prime Degree

Let E be a cyclic algebraic number eld of a prime degree. We prove an identity which lifts an exponential sum similar to the Kloosterman sum to an exponential sum taken over certain algebraic integers in E.

متن کامل

The Lifting of an Exponential Sum to a Cyclic Algebraic Number Field of Prime Degree

Let E be a cyclic algebraic number field of prime degree. We prove an identity which lifts an exponential sum similar to the Kloosterman sum to an exponential sum taken over certain algebraic integers in E.

متن کامل

the unit sum number of discrete modules

in this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $z_{2}$. we also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Nachrichten

سال: 2012

ISSN: 0025-584X

DOI: 10.1002/mana.201000130